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Abstract —Giant cells of the rrtgae Chara brauni and Nitelhz flexilis

were exposed to continuous wave and pulse-modulated bursts of X-band

microwaves and the vacnolar potentiaf was monitored for immedfate rarfia-
tion-correlated offsets. No such offsets were observed despite a resolution
of approximately 5 in 105, and despite the wide variety of frequencies,

power levels, and pulse protocols employed,

I. INTRODUCTION

T HE BIOLOGICAL EFFECTS of nonionizing electro-

magnetic radiation now appear to be numerous and
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are being studiedl intensively (e.g., [1]–[4]). Those which

seem to arise from direct electromagnetic heating of the

test preparation (i.e., thermal effects) are generally the best

characterized and least controversial. They tend to be

associated with ir~cident fields on the order of 100 W/m*

(10 mW/cm2 ) or greater. There are, however, in addition

to putatively thermal effects, many others which, because

of their occurrence at low power levels or because of the

form of their variation with system parameters, can not

readily be explained in ordinary thermal terms, These

so-called athermai effects tend to be less well characterized

and more controversial. They have been reviewed compre-

hensively by Adey [5].
Two characteristics common to most thermal and

athermal phenomena are 1) a prolonged period of irradia-

tion (at least minutes) is necessary for the effect to mani-

fest itself and 2) the ability to resolve shifts in the vmi-
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ables observed is small (less than 1 part in 102). In this

laboratory, a divergent strategy has been adopted in which

effects that occur early in the irradiation (within a few tens

of milliseconds) are sought with very high resolution

(greater than 1 part in 103) [6].

This paper presents an extension of these techniques into

the 8.2–12.4-GHz (X-band) frequency range in an effort

simply to detect the short term effects (if any) of low-level

microwave irradiation.

II. MATERIALS AND METHODS

A. Materials

All experiments were conducted on the eukaryotic green

algae Chara braunii and Nitella jlexilis using the giant

(roughly 10 mm long and 0.3 mm in diameter) internodal

cells. Cells from Chara cultures were normally in the

electrogenic state (i.e., vacuolar resting potential more

negative than – 120 mV) while those from Nitella cultures

were in the nonelectrogenic state (i.e., vacuolar resting

potential less negative than – 95 mV) [7],

B. Electronic Methods

These were modified but slightly from those employed

previously [6], [8].

The exposure apparatus consisted of a l.O-mm-wide

microstrip fabricated on a 0,62-mm-thick sheet of ceramic

whose dielectric constant was 75, The line was terminated

by a microwave chip resistor to match its approximately

12.5-0 characteristic impedance. A 2.2-mm-wide gap, per-

pendicular to the microstrip, formed a channel in the

dielectric sheet down which an electrolyte solution at 25° C

was flowed and into which the cell under test was placed

with its upstream end under the microstrip. Because of the

relatively good match 1) between cell and channel water,

and 2) between channel water and dielectric sheet, the field

should be uniform along the microstrip and the field

pattern impressed upon the cell’s upstream end should be

that of the line’s quasi-TEM mode.

The vacuolar resting potential of the cell was sensed by a

glass micropipette inserted into the downstream end of the

cell, and this potential was amplified and filtered as de-

scribed previously [6]. Segments of the potential signal

400 ms long and phase locked to irradiation bursts were

digitized and averaged for analysis. The average of 20

segments permitted a search for offsets on approximately
the 3-pV level, a resolution of roughly 5 in 105 when

compared to the vacuolar potential.

C. Irradiation Protocol

Bursts of irradiation 100 ms long were delivered to the

exposure apparatus by a directional coupler and a double

stub tuner. Nominal total power incident upon the fluid-

filled channel was derived 1) by calibrating, frequency by

frequency, the power to the tuner in terms of coupler

output, 2) setting the tuner for negligible back reflection, 3)

applying a theoretical correction factor for loss on the

microstrip, and 4) allocating a l.O-dB loss to the tuner.

Nominal power density to the exposed end of the cell was

TABLE I
PROTOCOL FOR PULSE-BURST IRRADIATION AT 9.09 GHr *

Pulse Interval (,. s)

2000 1000 500 200 100

1Pulsel+, dth 20 10 s * I

(,>31
200 100 50 20 10

2000 1000 500 200 100

*For most pulse protocols, the cells were tested at both 100 and 1000
W/m2 (power averaged over the 100-ms burst); those protocols marked
with the symbol $ were tested only at 100 W/m2.

derived by dividing this power by the cross-sectional area

of the microstrip (0.62 mm2).

To study the effects of frequency, nine different irradia-

tion frequencies (8.20, 8,64, 9.09, 9.58, 10.08, 10.62, 11.18,

11.78, and 12.40 GHz) were used. This logarithmic cover-

age of the X-band was chosen so that any frequency-reso-

nant offset of Q <20 would be observed. The nominal

power density of each 100-ms burst was 100 W/m2, and

three different burst protocols were used: 1) continuous

wave (CW); 2) l.O-ps pulses 1 ms apart; 3) O.1-ps pulses

0.1 ms apart.

To study the effects of pulse repetition rate, a frequency

of 9.09 GHz was chosen and 100-ms bursts of the pulse

structures described in Table I were employed.

To study the effects of lower power density, a frequency

of 9.09 GHz was chosen and 100-ms bursts were applied at

nominal power densities of 100, 50, 20, 10, 5, 2, and

1 W/m2. At each power density, both 1) CW bursts and 2)

bursts of 1,0-ps-wide pulses separated by 1.0 ms were

employed.

III. RESULTS

Each irradiation condition described above was tested

on three electrogenic cells from Chara braunii and three

nonelectrogenic cells from Nitella j7exilis. In no instance

was a significant radiation-correlated offset of the resting

potential observed.

Fig. 1 shows two sample chart recordings containing

summed responses of Chara braunii (a) and Nitella jlexilis

(b) to twenty radiation bursts. The traces reveal only
background noise.

IV. DISCUSSION

It is evident that the resting potential showed no signifi-

cant response under the irradiation protocols employed,

Since the resting potential is commonly believed to be a

sensitive indicator of general cellular function and condi-

tion, and since sufficiently powerful bursts of X-band

irradiation are known to have observable effects [9], one

must examine a number of hypotheses as to why the

protocols employed caused no observed offsets.

First, there may be no cellular effects of significance.

This is possible, but, in view of the present controversy
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Fig. 1. (a) Electrogenic Chara brarmii of resting potential – 163 mV.

Irradiation protocol: 100-ms bursts of 9.09 GHz radiation at an average
nominal power density of 1000 W/mz; each burst contained 200 5.O-ps
ptdses. (b) Nonelectrogenic Nitellaflexilis of resting potentiaf – 60 mV.
Irradiation protocol: 100-ms bursts of 11.18 GHz radiation at an
average norninaf power density of 100 W/m2; each burst contained
1000 O.1-ps pulses. In each case, irradiation began about 60 ms after the
beginning of the trace, verticaf bar= 20 pV, and horizontal bar=
40 ms.

about microwave bioeffects [10], such a supposition may

well be unwarranted.

Second, there may be effects, but not on the vacuolar

potential. Given the sensitivity of this variable to cellular

conditions, this seems unlikely.

Third, there are X-band effects, but with such narrow

frequency resonances that they were missed by the proto-

cols used. Millimeter-wave effects of Q >1000 are indeed

known [11], [12], but such sharp resonances have not yet

been reported in X-band.

Fourth, these protocols have effeets but not ones which

become manifest with the application of short, widely

spaced bursts. This could well be the case. Unfortunately,

the techniques employed here are less well suited to the

study of long-term irradiation since the very high resolu-

tion achieved depended upon using the cell as its own

control. This cannot be done over periods of many minutes

because of slow millivolt-level stochastic fluctuation of the

resting potential [13].

Thus, the principal importance of these data is that there

appears to be no simple, rapid, obvious electrical effect of

X-band irradiation in our preparation. The possibility of

sharp resonances in power or frequency, or the existence of

long-term effects, can not be ruled out. Moreover, these

conclusions apply only to X-band and do not extend to

higher (or lower) frequencies where there are theoretical

reasons for expectipg effects [14], [15].
!
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